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A B S T R A C T

Recent urban green space research highlighted that mobility-based measures of green space exposure may 
significantly mitigate a particular type of exposure measurement error (contextual errors) of residence-based 
measures. In this study, we examined an important manifestation of the contextual errors of residence-based 
measures: neighborhood effect averaging. We analytically illustrated that the contextual errors of residence- 
based measures may lead to a considerable underestimation of the associations between green space expo
sures and human health, and the reduction of such underestimation can be quantified through a mitigating 
factor. We employed data from a cross-sectional survey to assess the usefulness of our analytics. Based on par
ticipants’ 7-day GPS trajectories, we derived residence-based and mobility-based measures of participants’ ex
posures to green space using a spatiotemporally weighted approach. Logistic regression was employed to 
estimate the associations between green space exposures and participants’ overall health. We derived consistent 
and significant mitigating factors based on our analytics from the magnitudes of the estimated associations or the 
variances of green space exposure distributions. Our results indicate that mobility-based measures reduced about 
20.9 % – 52.3 % of the underestimation of the associations between green space exposure and health, which 
reflected the considerable influence of exposure measurement errors. Our study sheds light on how contextual 
errors may obfuscate the association between green space exposures and human health, which may also be true 
for other mobility-dependent environmental factors. This has crucial implications for a broad range of envi
ronmental and public health studies that need accurate estimation of health impacts.

1. Introduction

To examine how green space may affect human health, past research 
used various green space exposure measures to assess their association. 
For instance, Dzhambov et al. (2020) observed that most studies used 
spatial measures of greenspace (e.g., the normalized difference vegeta
tion index (NDVI), land cover and land use metrics, and distance to 
green space). Y. Liu et al. (2023c) identified over 70 approaches for 
green space exposure measures. However, there is no universally 
accepted measure of individual-level green space exposure due to the 
different conceptualizations, definitions, and operationalizations of 
green space in past studies. As observed in past environmental health 
and health geography studies, there may be different measurement er
rors and biases when different exposure measurement approaches are 

used (Gryparis et al., 2009; Hatch and Thomas, 1993; Rhomberg et al., 
2011). These errors and biases may stem from the spatial misalignment 
in the locations of the exposure data and those of the health data 
(Gryparis et al., 2009) and the spatial and temporal misalignment be
tween exposure levels derived from monitoring station data and in
dividuals’ locations (Hatch and Thomas, 1993; Richmond-Bryant and 
Long, 2020). Since these errors originate from the spatial and temporal 
contexts of measurement (e.g., different delineations of areal units), 
they are generally called contextual errors.

In green space research, additional contextual errors may stem from 
multiple sources and lead to multiple methodological issues. The first is 
the uncertain geographic context problem (UGCoP), which highlights 
the misalignment between the true geographic areas of exposure (people 
may have access to green space around the locations they visit during 
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the day) and the areal units (e.g., residential neighborhoods) used to 
measure individual exposures (i.e., improper delineations of the 
geographic areas used to assess exposure) (Kwan, 2012; Perchoux et al., 
2014; Spielman and Yoo, 2009; Spielman et al., 2013). Correspondingly, 
multiple studies highlighted that it may be more proper to employ ac
tivity spaces rather than purely neighborhoods for accurate environ
mental exposure measures (Perchoux et al., 2013). The prompt 
development of global positioning system (GPS) tracking techniques 
facilitated the delineation of activity spaces (Chaix, 2018; Chaix et al., 
2013). The second methodological issue is algorithmic and representa
tional uncertainties, which suggest that different models and represen
tations of green space may be associated with independent health 
pathways (Kwan, 2016; Yu et al., 2024). Meanwhile, spatial, temporal, 
and value-range non-stationarities further complicate the associations 
between green space exposures and human health outcomes (Bertram 
and Rehdanz, 2015; Y. Liu et al., 2023d; Liu et al., 2024c). Recently, a 
new manifestation of contextual errors was proposed, which is referred 
to as the neighborhood effect averaging problem (NEAP) (Kwan, 2018). 
The NEAP highlights the tendency that individual-level mobility-based 
exposures to environmental factors (e.g., green space) would tend to
wards the mean level of the participants or population of a study area 
when compared to their residence-based exposures. It occurs because 
most people move around in their daily lives, and as a result, their 
mobility-based exposures (i.e., approximations of the true exposures) 
tend to deviate from their residence-based exposures. For example, 
when people living in areas with high green space levels travel to areas 
with lower green space levels for work or leisure, their actual exposure 
to green space would be lower than estimated based on their residential 
neighborhoods. Conversely, when people living in areas with lower 
green space levels travel to areas with higher green space levels, their 
actual exposure would be higher than estimated. This means that 
mobility-based exposure measures can better approximate the true ex
posures to mobility-dependent environmental factors of most people, 
and measuring people’s exposure using mobility-based measures would 
mitigate contextual errors and lead to a more concentrated distribution 
around the average exposure level of the population or participants in a 
study area than residence-based measures. The occurrence of the NEAP 
has been observed by over a dozen studies for a range of 
mobility-dependent environmental factors, including air pollution 
(Dewulf et al., 2016; Kim and Kwan, 2021a, 2021b), infectious diseases 
(Huang and Kwan, 2022), traffic congestion (Kim and Kwan, 2019), and 
green space (Gyanwali et al., 2024; Wang et al., 2024; Xu et al., 2023) in 
different study areas (e.g., Los Angeles, Chicago, Virginia, West Virginia, 
and Kentucky in the U.S., and Beijing, Xining, and Hong Kong in China).

Previous methodological studies have highlighted the importance of 
mitigating contextual errors to reduce the risks of Type II errors and 
wrong conclusions when using statistical frameworks to explore 
environment-health associations (Liu et al., 2023d; Liu et al., 2024c). 
This argument emphasizes that the insignificant associations between 
residence-based exposure measures and human health outcomes may be 
found to be significant when using mobility-based exposure measures in 
the same health outcome modeling (Liu and Kwan, 2024; Liu et al., 
2023d). Further, as indicated by the manifestation of the NEAP, there 
may be another totally different improvement in human health outcome 
modeling. Considering the effect of the NEAP on the variance of the 
exposure distribution, the more accurate and concentrated exposure 
distribution using mobility-based measures than using residence-based 
measures (i.e., smaller variance of green space exposure distribution 
using mobility-based measures than using residence-based measures) 
may lead to higher estimated effect sizes. Since mobility-based measures 
conceptually refer to more accurate total exposure to 
mobility-dependent environmental factors in people’s daily lives, the 
higher estimated effect size using mobility-based measures means the 
mitigation of the underestimation using the residence-based measures. 
More importantly, these arguments on effect sizes also highlight that 
mobility-based measures may still mitigate the biases and lead to more 

accurate health association estimations than residence-based measures 
even though both mobility-based and residence-based measures can 
yield significant health associations in the same health outcome 
modeling in some cases.

However, several research gaps still hinder the studies of the NEAP 
when examining the health impacts of green space. First, the impacts of 
mobility-based measures on mitigating the underestimation of health 
effect sizes are not intuitively and straightforwardly understandable, 
which undermines the discussion of the NEAP and the importance of 
mobility-based exposure measures. Correspondingly, a rigorous 
analytical articulation of the mechanism using a statistical framework is 
still needed. Second, since empirical studies that confirm the mitigation 
magnitude of the underestimation are quite limited to date, corre
sponding rigorous experiments are also needed to provide strong evi
dence for confirming it.

To fill these research gaps and to advance our knowledge on how the 
NEAP may impact the association estimation between green space ex
posures and human health outcomes (i.e., the possible health impact of 
green space), we conduct an empirical study using data collected from a 
cross-sectional survey in Hong Kong with 940 participants. Our study 
objectives are to 1) examine whether the NEAP exists in green space 
exposure assessment using our Hong Kong data set, 2) analytically and 
empirically articulate how mobility-based measures may mitigate the 
underestimation of the association between green space exposures and 
overall health outcomes due to contextual errors and the NEAP, and 3) 
conduct a sensitivity analysis on this mitigating effect to confirm 
whether the distribution concentration of measured exposures is trans
mitted to the estimation of the association between green space expo
sures and overall health outcomes.

2. Analytical derivation of how mobility-based measures may 
mitigate the underestimation of the association between green 
space exposures and health outcomes

In this section, we analytically illustrate how mobility-based expo
sure measures may reduce the contextual errors of residence-based 
exposure measures (via deriving and defining a mitigating factor λ) 
and how reducing these errors may influence the magnitude of the 
estimated association between an environmental factor and the perti
nent health outcome.

To begin, we focus on estimating the magnitude of the association 
between an environmental factor and the possible health impact 
through linear ordinary least squares (OLS) regression because it is the 
baseline technique used in health studies and is straightforward and 
concise for articulating our arguments (Dismuke and Lindrooth, 2006; 
Judkins and Porter, 2016). Linear OLS regression generally assumes 
normal distributions (N

(
μ,σ2)) of the health outcomes and explanatory 

variables parameterized with the expectation μ and variance σ2. Given 

the dependent health outcome Y ∼ N
(

μy, σ2
y

)
and an influencing envi

ronmental factor X ∼ N
(
μx, σ2

x
)
, we generally assume the linear associ

ation as 

Y = I + Xβ + ε (1) 

where β is the association magnitude between X and Y, I is the constant 
intercept, and ε is the random error that cannot be explained by the 
model. Correspondingly, the magnitude of the estimated association β̂ 
and the constant intercept ̂I can be derived using OLS as 

β̂ =
[
(X − X)T

(X − X)
]− 1

(X − X)T
(Y − Y) (2) 

Î =Y − Xβ̂ (3) 

where X and Y are the estimated μx and μy from observations, respec
tively. To be more concise in our analytics (Fig. 1A), we remove the 
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central tendency in [X;Y] as 

Xʹ=X − μx (4) 

Yʹ=Y − μy (5) 

such that, Xʹ ∼ N
(
0, σ2

x
)

and Yʹ ∼ N
(

0, σ2
y

)
. In this case, Î ≡ 0 and 

Equations (1) and (2) can be rewritten as 

Yʹ=Xʹβ + ε (6) 

β̂ =
(
X T́Xʹ)− 1X T́Yʹ (7) 

As a result, we can remove the constant intercept and purely discuss 
the magnitude of the estimated association β̂ in a similar symmetric 
form.

Then, let us incorporate the impact of mobility-based measure on the 
distribution of X. Given the residence-based measure of an environ

mental factor Xrbm ∼ N
(

0, σ2
x,rbm

)
and the mobility-based measure of the 

same environmental factor Xmbm ∼ N
(

0,σ2
x,mbm

)
, it is apparent to assume 

Fig. 1. Graphic illustrations of the analytics in this work: (A) the removal of central tendency; (B) the manifestation of the NEAP using variance σ2, and (C) the 
manifestation of the mitigating factor λ. 1-SDE: the one-standard-deviation ellipse of the co-distribution of [X;Y] in an R2 Cartesian space. The slope of the longer axis 
of the 1-SDE corresponds to the estimated association magnitude, and the eccentricity of the 1-SDE corresponds to the confidence level of the estimated associa
tion magnitude.
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σ2
x,rbm > σ2

x,mbm according to the definition of the NEAP (Fig. 1B). Here we 
define a mitigating factor λ ∈ (1,+∞) as 

σ2
x,rbm

σ2
x,mbm

=
Var(Xrbm)

Var(Xmbm)
=

XT
rbmXrbm

XT
mbmXmbm

= λ2 (8) 

such that 

σ2
x,mbm =

σ2
x,rbm

λ2 (9) 

and 

XT
rbmXrbm = λ2XT

mbmXmbm =XT
mbmλTλXmbm =(λXmbm)

T
(λXmbm) (10) 

i.e., Xrbm follows the equivalent normal distribution of λXmbm 
(Xrbm ∼ λXmbm). The factor λ quantitatively illustrates how mobility- 
based measures reduce the contextual errors in residence-based mea
sures and how the distribution of the mobility-based measures is closer 
to the true distribution of exposure measures than the residence-based 
measures, whereby we can call λ the mitigating factor. Next, we illus
trate how λ can be transmitted from the exposure measures to the as
sociation estimation through a mitigated distribution.

Now let us turn back to the estimation of association magnitude β̂ 

β̂rbm =
(
XT

rbmXrbm
)− 1XT

rbmY

=
(
XT

mbmλTλXmbm
)− 1

(λXmbm)
TY

=
λ
λ2

(
XT

mbmXmbm
)− 1XT

mbmY =
1
λ

β̂mbm

(11) 

i.e., β̂rbm = 1
λβ̂mbm. Note β̂mbm > β̂rbm since λ > 1. Thus, as presented 

above, we analytically illustrated how the mitigating factor λ reduces 
contextual errors and the variance of exposure levels, which in turn 
influences the magnitude of the estimated association between green 
space exposures and health outcomes.

A more straightforward graphic illustration of Equation (11) is 
shown in Fig. 1C. As observed in past studies, the NEAP can manifest as 
either upward averaging (amplification) or downward averaging 
(attenuation), leading to a more concentrated distribution of exposure 
levels and a smaller variance when using mobility-based measures 
(when compared to using residence-based measure (i.e., σ2

x,rbm >

σ2
x,mbm)). Consequentially, we can analytically illustrate that the 

magnitude of the association estimated with mobility-based measures 
would be larger than that obtained with residence-based measures 
(Equation (11)). Since residence-based exposure measures contain 
considerable contextual errors that are reduced by mobility-based 
measures, the higher estimated association obtained with mobility-based 
measures indicates how much residence-based measures underestimate the 
association. However, no empirical study has evaluated how much 
residence-based measures may underestimate such association and how 
much mobility-based measures may reduce contextual errors.

In the following sections, we employed a cross-sectional dataset with 
940 participants collected in Hong Kong to empirically examine these 
issues. Participants’ residence-based and mobility-based exposures to 
green space were derived using GPS trajectories, fine-grained remote 
sensing data, and spatiotemporally weighted approaches. Logistic 
regression was used to derive the mitigating factor λ and assess its in
fluence on the association between participants’ green space exposures 
and self-reported health. Finally, a bootstrapping approach and multiple 
t-tests were used to analyze the sensitivity and significance of the 
derived λ. In the following subsections, we describe our data and 
methods in detail.

3. Methods

3.1. Study area

Our cross-sectional survey was conducted in Hong Kong, which is 
one of the world’s most urbanized and populated megacities. Hong Kong 
had a population of about 7.5 million by the end of 2023 and all resi
dents are fully urbanized (Department, 2023). Its green space coverage 
is about 75 % of its land area, while the downtown areas have green 
space coverage ranging from 14.45 % to 44.24 % (Tian et al., 2011). The 
vastly uneven distribution of green space in Hong Kong indicates a high 
likelihood of considerable differences between people’s mobility-based 
and residence-based exposures to green space in their everyday lives. 
Thus, the study area is excellent for examining the extent to which 
residence-based measures may underestimate the association between 
green space exposure and health and mobility-based measures may 
reduce contextual errors.

There are two types of residential communities in Hong Kong: old 
towns developed before the 1950s, and new towns developed later (Y. 
Liu et al., 2023b). Compared to old towns, new towns in Hong Kong 
were developed with better plans to meet the needs of the booming 
population, such as much taller buildings, wider roads, and more public 
open spaces (Y. Liu et al., 2023b). We chose three old towns and three 
new towns for our survey (Fig. 2). The selected new towns are Tin Shui 
Wei (TSW), Sha Tin (ST), and Kwai Tsing (KTS). The selected old towns 
are Sham Shui Po (SSP), Central and Western (CW), and Kwun Tong 
(KTO). KTO was a typical old town and was recently renovated. How
ever, the renovation did not significantly alter the green space settings in 
KTO, and we still consider KTO as an old town in our survey. The 
geographic settings of each community are summarized in Table 1.

3.2. Data collection

In this study, green space is defined as any land patch covered by 
vegetation (Y. Liu et al., 2023c). It was delineated using PlanetScope 
multispectral remote sensing images at 3 m spatial resolution (Team, 
2017). The normalized difference vegetation index (NDVI) and a 
thresholding approach were employed to identify green space and 
non-green space after radiometric calibration and atmospheric correc
tion (Y. Liu et al., 2023d). The accuracy and validity of the delineated 
green space have been carefully evaluated in several studies (Kan et al., 
2023; D. Liu et al., 2023a; Y. Liu et al., 2023d).

The remote sensing images used in this study were captured in 
January 2021. Although there is some mismatch between the timing of 
these images and our survey data (which were collected from March 
2021 to April 2023), it would not affect the results much because Hong 
Kong has a humid subtropical climate and the green space in Hong Kong 
is ever-green and remains largely unchanged throughout the year. In 
addition, Hong Kong is a highly urbanized city without rapid or massive 
land cover changes over time. We therefore did not consider seasonal 
changes and landcover changes in our study (Liu et al., 2024b).

In the survey, participants in each selected community were 
recruited through stratified sampling, which aimed to generate repre
sentative samples of the respective communities based on their socio
demographic compositions (age, gender, monthly household income, 
education level, and marital status). The survey protocol was approved 
by the Survey and Behavioral Research Ethics (SBRE) Committee of the 
authors’ university. Written informed consent was obtained from each 
participant before data were collected from them. As Table 2 indicates, 
our sample has more female participants than male participants due to 
the slightly lower response rate of male residents. Overall, the socio- 
demographic profiles of the respective subsamples of each selected 
community closely represent the respective populations. Our partici
pants cover diverse socio-demographic groups along multiple socio- 
demographic axes (Table 2). About 74 % of participants are employed 
and need to commute to work. However, other participants may also 
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have considerable mobility due to activities such as shopping and leisure 
activities. About 82 % of participants have an activity space size larger 
than 1 km2 during weekday daytime, and 63 % during weekend 
daytime.

As part of a larger project, the survey data were collected using an 
integrated individual environmental exposure assessment system 
(IEEAS) developed by Wang et al. (2021) and implemented in subse
quent studies (Kou et al., 2020; Ma et al., 2021). The system collected 
real-time exposure data from each participant using GPS, mobile sen
sors, activity-travel diaries, health questionnaires, and geographic 
ecological momentary assessment (GEMA). During the surveys days, 
each participant carried a GPS-equipped smartphone, which recorded 

Fig. 2. The representative communities in our surveys.

Table 1 
The geographic settings and sample sizes of the representative communities in 
our surveys.

Town type Name Area Population Sample 
size

Old towns Sham Shui Po (SSP) 5.35 
km2

~300 k 104

Central and Western (CW) 2.83 
km2

~175 k 89

Kwun Tong (KTO, 
renovated)

3.93 
km2

~446 k 182

New 
towns

Tin Shui Wei (TSW) 4.32 
km2

~300 k 104

Sha Tin (ST) 5.64 
km2

~315 k 289

Kwai Tsing (KTS) 5.84 
km2

~441 k 172

Table 2 
The socio-demographic profiles and self-reported overall health statuses in 
either the old towns or the new towns in our surveys.

New towns 
(TSW, ST, and 
KTS)

Old and 
renovated towns 
(SSP, CW, and 
KTO)

Gender Male 187 33.1 % 126 33.6 %
Female 378 66.9 % 249 66.4 %

Age 18–24 84 14.9 % 49 13.1 %
25–44 321 56.8 % 225 60.0 %
45–64 160 28.3 % 101 26.9 %

Monthly household income a Low 149 26.4 % 96 25.6 %
Middle 232 41.0 % 137 36.5 %
High 184 32.6 % 142 37.9 %

Education level b Low 140 24.8 % 78 20.8 %
Middle 308 54.5 % 222 59.2 %
High 117 20.7 % 75 20.0 %

Marital status c Single 311 55.0 % 220 58.7 %
Married 208 36.8 % 128 34.1 %
Others 46 8.2 % 27 7.2 %

Overall health status Good 468 82.8 % 325 86.7 %
Bad 97 17.2 % 50 13.3 %

Total 565 100.0 % 375 100.0 %

a Monthly household income: the low-income group has an income of less 
than 20,000 Hong Kong dollars (HKD), the middle-income group has an income 
of 20,000–39,999 HKD, and the high-income group has an income of 40,000 
HKD or above.

b Education level: the low group graduated from middle school or lower, the 
middle group is with a bachelor’s degree or certification, and the high group is 
with a master’s degree or higher.

c Other marital statuses include those divorced and widowed.
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the location of each of their visited places at a 1-s resolution using three 
independent APPs, including AirCasting, GPS Logger, and Six Foot 
(Wang et al., 2025). AirCasting is an APP for monitoring air pollution 
that also collects GPS data. The time participants spent at different lo
cations (e.g., home and other out-of-home locations) was derived from 
the GPS data. The GPS data collected were aligned spatially and 
temporally by cross-checking the GPS, activity-travel diary, and sensor 
data (only the GPS location sequences of the sensor data were employed 
in this study). Participants’ GPS trajectories were recorded consecu
tively for 7 days. These trajectories originally had a temporal resolution 
of 1 s. They were then filtered using a spatiotemporal clustering 
approach (Jiang et al., 2017; Li et al., 2008; Martin et al., 2023) and 
resampled to 1-min temporal resolution to reduce measurement un
certainties (Wang et al., 2025). After excluding surveys with missing or 
incomplete data (e.g., incomplete GPS trajectories with completeness 
lower than 98 %), we finally have valid data from 940 participants 
(Table 2).

As part of a larger project, the health questionnaires and activity- 
travel diaries collected comprehensive data on participants’ socio- 
demographic attributes, physical and mental health statuses, physical 
activity, sleep quality, neighborhood environments, and so on. In this 
study, participants’ self-reported overall health status is used as an in
dicator of their current health condition. It was recorded on a 6-point 
scale in response to the question: “Overall, your health condition is?” 
where the answers were “excellent” (1) to “terrible” (6). Due to the few 
responses of bad health statuses, the scores were re-coded into two 
categories: good health (excellent, very good, and good health) and bad 
health (bad, very bad, and terrible).

3.3. Green space exposure measures

In this study, we derive a participant’s green space exposure as the 
green space area coverage ratio in a buffer zone around either the per
son’s home location (i.e., residence-based measures) or visited locations 
(i.e., mobility-based measures). The residence-based measure of green 
space exposure EGS

rbm is defined as 

EGS
rbm =

A(buf ∩ GS)
A(buf)

(12) 

where buf is a buffer zone around a participant’s home location, GS is 
the green space inventory, and function A returns the size of the area, 
either the green space within the buffer zone or the buffer zone itself. 
The mobility-based measure of green space exposure EGS

mbm can be 
defined in a similar format through a spatiotemporally weighted 
approach: 

EGS
mbm =

∑A(bufi ∩ GS)
A(bufi)

⋅
ti+1 − ti

D
(13) 

where bufi is the buffer zone around the i-th visited location along a 
participant’s activity-travel trajectory, ti is the timestamp of the i-th 
visited location and ti+1 is the next timestamp, and D is the duration of 
the entire survey period (i.e., 7 days) for a participant. As indicated by 
Equation (13), the green space exposure at different places is dis
proportionally weighted through visit durations, and the green space 
exposure at a long-staying place (e.g., home or office) is weighted more 
importantly than a quickly passing-by place (e.g., a park on the way 
home).

Both EGS
rbm and EGS

mbm are unitless scalars ranging from 0 to 1. A larger 
value of EGS

rbm means more exposure to green space at a participant’s 
home location, and a larger value of EGS

mbm means more exposure to green 
space along a participant’s activity-travel trajectories. The buffer radii 
for both measures are set to 300 m. Note that a recent paper has put 
forward an analytical framework for identifying the best buffer size for 
examining the health impacts of green space for a specific study area 

(Liu et al., 2024a). The “optimal” buffer size was identified by mini
mizing contextual errors and evaluating the statistical significance of the 
association between green space and human health. Buffer zones from 
1.5 m to 2500 m were tested and the results indicate that the most 
causally relevant green space exposures are derived using buffer zones 
from 100 to 500 m and 300 m is the best. Such configuration was also 
used in several previous studies (Y. Liu et al., 2023d; Liu et al., 2024c; 
Zheng et al., 2024). ArcGIS Pro and R were employed for deriving the 
exposure measures.

3.4. Statistical analyses

We conducted three-phase statistical analyses to examine how 
mobility-based exposure measures may reduce the underestimation of 
the association between green space and health by residence-based 
exposure measures using IBM SPSS Statistics. In the first phase, we 
used frequency plots and multiple F-tests to confirm the occurrence of 
neighborhood effect averaging in the selected communities. In the sec
ond phase, we employed logistic regression based on maximum- 
likelihood estimation to estimate the association between green space 
exposures and participants’ overall health. Logistic regression is more 
suitable for handling our binary health outcome (Pohlman and Leitner, 
2003). Further, it does not assume the normal distribution of the 
exposure measures and then loosens the requirements for the explana
tory variables. In this study, the model is designed as 

log
(

P(good health)
1 − P(good health)

)

= I+BGS
m EGS

m +
∑

BjCovj +
∑

BkComk + ε

(14) 

where P(good health) is the probability of a participant being in good 
health, I is the intercept, EGS

m is the green space exposure and BGS
m is the 

corresponding association between green space exposure and partici
pants’ overall health. m stands for either residence-based or mobility- 
based measures. ε is the random error that cannot be explained by our 
model. To control for the potential effects of participants’ socio- 
demographic attributes and the geographic contexts of different com
munities (i.e., new towns versus old towns), we also employed a group of 
covariates and dummy variables: Covj stands for a group of covariates to 
control for the influence of participants’ socio-demographic attributes, 
including gender, age, household income level, education level, and 
marital status; Comk stands for a group of dummy variables to control for 
the influence of geographic contexts (see more details in Table 2). The 
coefficients of these controlled covariates and dummy variables are Bj 

and Bk, respectively. A preliminary analysis using multilevel binary lo
gistic regression indicates that the variability of either the intercept or 
the coefficient of green space exposure is not significant between 
different communities in either the old towns or the new towns. Thus, it 
is appropriate to employ a single-level but more concise binary logistic 
model.

In the last phase, we tested the sensitivity of the derived mitigating 
factor λ. According to Equations (8) and (11), we can derive λ from 
either the estimated coefficients of green space exposures or from the 
variances of green space exposure distributions as below 

λb =
BGS

mbm
BGS

rbm
(15) 

λv =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var

(
EGS

rbm
)

Var
(
EGS

mbm
)

√

(16) 

where λb is the mitigating factor derived from the estimated coefficients 
of green space exposures, and λv is the mitigating factor derived from the 
variances of green space exposure measures. Function Var returns the 
variance of a group of observations. Equations (8)–(11) indicate that the 
mitigation (i.e., reduction) of the underestimation (indicated by λb) 
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originates from the concentration in the variance of the exposure mea
sures (indicated by λv). Correspondingly, λb and λv should be statistically 
consistent with each other in practice. Note that there is currently no 
available method for evaluating the uncertainties in the derived λ and 
thus no analytical approach is available for testing the consistency be
tween λb and λv. Instead, we employed a bootstrapping approach to 
simulate the distributions of the derived λ and evaluated the standard 
errors of the expectation of λ (Beasley and Rodgers, 2012; Haukoos and 
Lewis, 2005). We randomly chose two-thirds of the participants from 
our total sample, repeated the logistic regression, and derived λb and λv 
from the subset. We repeated these steps 500 times and derived 500 
pairs of λb and λv, respectively. Finally, multiple t-tests were employed to 
test the differences between 1) λb and λv derived from the subsets; 2) λb 
or λv derived from the subsets and the null hypothesis, i.e., λ = 1; and 3) 
λb or λv derived from the subsets and the corresponding λ derived from 
the full set.

4. Results

4.1. Confirmation of the occurrence of the NEAP

We derived the residence-based and mobility-based measures of 
green space exposures for the 940 participants. To confirm the occur
rence of the NEAP, we plotted the frequency of green space exposure 
levels in the new towns and the old towns. For the new towns, we 
observed apparent NEAP (Fig. 3A). For the participants in the new 
towns, clear upward averaging can be observed using mobility-based 
measures at the lower end of the plot and clear downward averaging 
can be observed at the higher end. In contrast, the frequency of green 
space exposure levels near the average level of the entire sample is 
higher using mobility-based measures than residence-based measures. 
These are typical manifestations of the NEAP. We thus conclude that for 
the new towns, using mobility-based exposure measures mitigates the 
contextual errors of residence-based exposure measures (Kwan, 2012).

However, for the old towns, the differences in the exposure-level 
frequencies between mobility-based and residence-based measures 
have a slightly different pattern (Fig. 3B). We can observe a clear up
ward averaging in the old towns but the downward averaging in green 
space exposure is milder and less obvious in the higher end (from 0.33 to 
1.00). This means that people who live in old towns with high green 
space exposures may have low daily mobility or travel to areas with 
similarly high green space levels in their daily lives. However, the 
overall tendency of the two frequency distributions still indicates the 
occurrence of the NEAP: the frequency curve of mobility-based expo
sures shifted toward the mean value when compared to the frequency 
curve of residence-based exposures. This means that mobility-based 
measures can still mitigate some contextual errors of residence-based 
measures in the old towns (Kwan, 2012).

Our argument on how the NEAP may impact the association 

estimation originates from the concentration of the variance using 
mobility-based measures of green space exposure rather than that using 
residence-based measures. Thus, we conducted F-tests on the variance 
between the two distributions of green space exposure to statistically 
confirm the occurrence of the NEAP (Table 3). The F score for either the 
new towns or the old towns shows a value larger than 1 and is significant 
at the 0.05 level (i.e., the variance of mobility-based measures is 
significantly smaller than the variance of residence-based measures). 
These results indicate that the distribution of green space exposure 
measures is more dispersed when using residence-based measures than 
when using mobility-based measures, which means the occurrence of 
the NEAP. To differentiate the specific manifestations between the old 
and new towns, we name the case of the new towns the symmetric NEAP 
case and the case in the old towns the asymmetric NEAP case. We also 
tested the difference in mean values between the residence-based and 
mobility-based measures of green space exposure in either the new 
towns or the old towns (Table 3). We observed an insignificant differ
ence in the new towns and a significant difference in the old towns. 
However, articulated by Equations (4)–(7), the differences in the mean 
values of green space exposure only affect the intercepts in the regres
sion models and do not affect the estimation of health associations. 
These differences thus will not affect our discussions of underestimated 
health associations.

4.2. Estimated association magnitudes and the mitigating factor λ

As indicated by the analytics presented in Section 2, mobility-based 
measures of green space exposure may reduce the contextual errors of 
residence-based measures and lead to smaller variance. They may miti
gate the underestimation of the association between green space and health 
outcomes, and we should observe a much larger association magnitude 
using mobility-based measures than residence-based measures. In this 
study, we employed logistic regression and 940 participants’ self- 
reported overall health statuses as an example. As the model results in 
Table 4 indicate, green space exposure and health have positive asso
ciations using either residence-based or mobility-based measures in the 
new towns and negative associations using residence-based measures in 
the old towns. These results are consistent with previous studies and the 
contradictory associations can be well explained by the different 
geographic contexts and different primary pathways in either the old 
towns or the new towns (Y. Liu et al., 2023d; Liu et al., 2024c). For 
example, residents may have closer contact with green space in the 
compact old towns, and the risk of vector-borne diseases is higher since 
green space may serve as the habitat of these vectors. In contrast, green 
space is better planned in the new towns and farther from residents, 
whereby the risk of vector-borne diseases may dramatically decrease. 
Instead, green space may prompt residents’ mental health and be asso
ciated with better overall health. Our estimated associations between 
green space exposure and health for the new towns are statistically 

Fig. 3. The frequency plot of green space exposures in (A). the new towns and (B). the old towns. RBM: residence-based measures, MBM: mobility-based measures. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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significant at the 0.10 level, while our estimated associations for the old 
towns are not statistically significant. Since this work aims to discuss 
how mobility-based measures may mitigate the underestimation of the 
associations rather than confirming the health impact of green space at a 
very high confidence level, the estimated associations between green 
space exposures and overall health outcomes, especially in the new 
towns, would adequately enable our more important discussion of the 
mitigating factor λ.

As indicated by Equations (8) and (11), we can derive the mitigating 
factor λ through either estimated association magnitudes (i.e., λb) or the 
variances of green space exposure measures (i.e., λv), and they theo
retically should both be larger than 1 by definition. In our cases 
(Table 4), the λb for the new towns is 1.290 while the λv for the new 
towns is 1.432, which agrees well with our analytics. In contrast, the λb 
for the old towns is − 0.538 while the λv for the old towns is 1.186. Since 
we did not observe statistically significant associations in the old towns 
using either residence-based or mobility-based measures, the derivation 
of λb in the old towns indeed becomes a case of 0/0, whose evaluation is 
mathematically undefined. The uncertainties in the estimated associa
tions for the old towns lead to an unpredictable λb even though we can 
observe a λv that complies with our analytics. However, we do not know 
the uncertainties in λ and thus cannot claim that the derived λb and λv are 
consistent with each other. Thus, in the next subsection, we provide a 
more in-depth discussion of the mitigating factor λ using bootstrapping.

4.3. Sensitivity analysis of the mitigating factor λ

We employed a bootstrapping approach to repeatedly derive λ 500 
times using randomly selected subsets of our sample. The likelihood 
distributions (in logarithmic values) of derived λb and λv are shown in 
Fig. 4. The distributions of derived λb and λv are both approximately 
unimodal distributions, which enables us to systematically test the ex
pectations of the mitigating factor λ. Moreover, we found that the λv 
derived from green space exposure variances is more precise than the λb 
derived from estimated association magnitudes. The precision of the 
estimation is indicated by the width of the value range. The ranges of the 
derived λv are within (1.36, 1.51) for the new towns, while the ranges of 
the derived λb are within (0.00, 3.00). Similarly, the ranges of the 
derived λv are within (1.10, 1.28) for the old towns, while the ranges of 
the derived λb are most within (− 3.00, 0.60). These manifestations agree 
well with our analytics. Since λb can be influenced by several other 
factors in the modeling, including the association itself, contextual er
rors, and other covariates, it is reasonable to expect larger uncertainties 
(wider value ranges) and observe lower precision in the derivation of λb 
than the derivation of λv.

We further employed multiple t-tests for an in-depth discussion of the 
consistency among the derived λ from different approaches (Fig. 5). We 
found that both the derived λb and λv for the new towns are not statis
tically different from each other at the 0.05 level using either the full 
sample set or subsets (Fig. 5A green linkage). Moreover, both λb and λv in 
the new towns are statistically different from 1 (the null hypothesis of no 
change in associations) at the 0.05 level. These results indicate that the 
derived λb and λv in the new towns are consistent with each other and 
indicate mitigation of the underestimation at a very high confidence 
level, which is a solid confirmation of our analytics. On the other hand, 
we observed that the associations between green space exposures and 
participants’ overall health outcomes in the old towns are not signifi
cantly different from 0 in Table 4. Consequentially, mitigating the un
derestimation of 0 still yields 0. In this case, it is not possible to derive a 
reliable λb in the undefined form of 0/0, indicated by the significant 
disparity between λb and λv in Fig. 5B.

5. Discussions

5.1. Interpretation of this study

In this study, we argued that the NEAP may lead to underestimations 
of the associations between people’s green space exposures and health 
outcomes, and mobility-based measures of green space exposure may 
mitigate the underestimations by reducing contextual errors. We 
analytically illustrated the mechanism through a mitigating factor λ and 
empirically assessed our analytics using data from 940 participants from 
Hong Kong.

We confirmed the occurrence of the NEAP in green space exposure in 
both the new and old towns of Hong Kong, successfully predicted the 

Table 3 
F-tests of the variance concentration for the confirmation of the NEAP and t-tests of the differences in mean values. RBM: residence-based measures, MBM: mobility- 
based measures.

Test of the difference in 
variances a

Variance of exposure using 
RBM

Variance of exposure using 
MBM

RBM set degree of 
freedom

MBM set degree of freedom F score p-value

New towns 3.46*10− 2 1.69*10− 2 564 564 2.052 <0.0001
Old towns 1.91*10− 2 1.35*10− 2 374 374 1.406 =

0.0005

Test of the difference in 
mean values b

Mean value of exposure 
using RBM

Mean value of exposure 
using MBM

d value Standard 
error

Degree of 
freedom

t value p-value

New towns 0.2555 0.2502 0.005284 0.004682 564 1.129 0.260
Old towns 0.1682 0.1803 − 0.012081 0.004721 374 − 2.559 0.011

a F-test of difference in variance.
b Paired-sample t-test of difference in mean values.

Table 4 
The estimated associations between green space exposures and participants’ 
self-reported overall health status and corresponding derived mitigating factors 
λ. RBM: residence-based measures, MBM: mobility-based measures. CI: confi
dence interval. S.E.: standard error. The Variance Inflation Factor (VIF) values of 
the variables in the four models range from 1.065 to 2.481, indicating that 
multicollinearity may not be problematic in our modeling.

New Towns (symmetric NEAP 
case)

Old Towns (asymmetric NEAP 
case)

N 565 375
EGS

m approach (m) RBM MBM RBM MBM
Association BGS

m 1.303 1.681 − 1.754 0.944
Odd ratio 3.681 5.374 0.173 2.571
S.E.of BGS

m 0.719 1.004 1.192 1.509
CI of BGS

m (α =

0.10)
(0.120, 
2.486)

(0.030, 
3.332)

(-3.715, 
0.207)

(-1.538, 
3.426)

CI of the odd 
ratio

(1.127, 
12.013)

(1.030, 
27.994)

(0.024, 
1.230)

(0.215, 
30.753)

p-value 0.070 0.094 0.141 0.531
λb

a 1.290 − 0.538
Variance of EGS

m 3.465 ×
10− 2

1.689 ×
10− 2

1.905 ×
10− 2

1.355 ×
10− 2

λv
a 1.432 1.186

a Please see Equations (15) and (16) for the derivation of λb and λv.
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underestimations in the associations between green space and health 
outcomes for the new towns, and derived the magnitude of the un
derestimations through the mitigating factor λ. In our new town model, 
we observed significant associations between green space exposure and 
participants’ overall health outcomes, using either residence-based or 
mobility-based measures. The S.E. of the estimated associations are 
similar. These manifestations indicate that the estimated effect sizes 
using either residence-based or mobility-based exposure measures are of 
equivalent precision to avoid Type II errors in our new town models. 
However, the significant mitigating factor (λ) observed in the new town 
models further indicates that the mobility-based measures lead to a 
more accurate estimated effect size by mitigating the contextual errors in 
the residence-based measures.

Note that the change in the estimated associations (mitigation 
magnitude of underestimation) can be associated with λb as 

C(B)=
BGS

mbm − BGS
rbm

BGS
rbm

=
BGS

mbm

BGS
rbm

− 1 = λb − 1 (17) 

In the new towns, the derived λb is about 1.366, with a 95 % confidence 
interval of (1.209, 1.523). These results indicate that about 20.9 % – 
52.3 % of the underestimation can be mitigated with very high confi
dence by using the mobility-based measures of green space exposure 
rather than using the residence-based measures. The mitigated under
estimation resulted from mitigating the contextual errors, especially 
both the upward and downward averaging manifested by the NEAP.

5.2. Implication of this study

Multiple methodological studies have highlighted the Type II errors 
in health outcome modeling using residence-based measures (Liu and 
Kwan, 2024; Y. Liu et al., 2023d). Previous observations indicate that 
there may be insignificant associations between residence-based mea
sures and health outcomes but significant associations with 
mobility-based measures in the same health outcome modeling. This 
study shows a totally new and different manifestation. Although 
residence-based and mobility-based measures can both have significant 
associations with health outcomes in some cases, the modeling using 
mobility-based measures may not only avoid wrong conclusions (Type II 
errors) but also yield more accurate estimated associations by mitigating 
the contextual errors in the residence-based measures. As our results 
indicate, about 20.9 % – 52.3 % of the underestimated associations 
between green space exposures and health outcomes (due to contextual 
errors) can be mitigated by using mobility-based measures of green 
space exposure compared to when using residence-based measures. This 
is a considerable amount of exposure measurement error in estimating 
green space’s possible health impacts. It highlights that critical attention 
is needed when measuring green space exposure and estimating its 
health impacts if we want to obtain accurate estimations of green space’s 
health impacts, which become increasingly practical and important for 
various public health concerns.

Based on our analytics, it is also apparent that mobility-based 
exposure measures can help reduce the underestimation of the health 
impacts of an environmental factor due to contextual errors and the 

Fig. 4. The likelihood distributions (in logarithmic values for better illustration) of derived λ using bootstrapping: (A). λb and λv in the new towns, and (B). λb and λv 

in the old towns.

Fig. 5. The t-tests of consistency between λb and λv (A). in the new towns and (B). in the old town. H0: the null hypothesis of no change in the estimated associations, 
i.e., λ = 1; BS: average value (expectation) of λ using bootstrapping, two-thirds randomly selected samples, 500 repeats, the standard error of expectation is enclosed 
by parenthesis; Model: the estimated λ using the full sample set, no available theory enables the uncertainty evaluation in this case. Two-tailed t-tests, differences are 
highlighted in green if not statistically different from 0 at the 0.05 level. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.)
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NEAP. In this study, we employed green space exposure as an example to 
evaluate the analytics we put forward. Our analytics and the mitigating 
factor will also be useful for mitigating contextual errors and the un
derestimation of the health impacts of other mobility-dependent envi
ronmental factors, such as air pollution (Dewulf et al., 2016; Kim and 
Kwan, 2021a, 2021b), infectious diseases (Huang and Kwan, 2022), 
traffic congestion (Kim and Kwan, 2019), and urban noise. Our analytics 
indeed provide significant suggestions and implications for a broad 
scope of epidemiological, environmental, and public health studies that 
share similar interests in the health impacts of various environmental 
factors.

However, we need to highlight that our analytics and the mitigation 
of underestimated effect sizes can only be valid when the NEAP exists in 
people’s exposure to environmental factors. Since we observed an 
apparent NEAP in our study area and significant associations in the new 
towns, we can validate our analytics with very strong evidence. In other 
contexts where the NEAP does not occur or for other environmental 
factors that are not mobility-dependent, it is not proper to directly apply 
our conclusions.

5.3. Limitations of this study

Although we successfully illustrated our arguments using cross- 
sectional data from Hong Kong, this study still faces some limitations. 
First, we observed significant positive associations between green space 
and health in our study, but we are unclear on how the adverse health 
impacts of other environmental impact factors (e.g., air pollutants) may 
have influenced our results. Second, our sample may be inadequate for 
uncovering the disparities between different socio-demographic groups 
when mitigating the underestimated associations between green space 
and health. Future data collections with larger sample sizes, more pre
cise health outcome measures, and other environmental exposure 
measures may further deepen our understanding of these methodolog
ical issues. Third, we employed bootstrapping to estimate the distribu
tion of the mitigating factor (λ) and the repeat times may slightly affect 
our estimation of λ’s expectation. We conducted a sensitivity test with 
5000 repeats. The expectation of λb is 1.399 with a 95 % CI of (1.297, 
1.500). However, it does not change any of our discussions and con
clusions. Finally, our study employed participants’ self-reported overall 
health, and we did not highlight concrete pathways since it is beyond the 
scope of this paper. Y. Liu et al. (2024c) have analytically articulated the 
disparities between the paradigms of residence-based and 
mobility-based exposure measures. Mobility-based measures show ad
vantages in most cases of mobility-dependent environmental exposures, 
such as green space exposure examined in this study. However, 
residence-based exposures may be more relevant than mobility-based 
exposures regarding some specific health concerns. For example, expo
sure to indoor vegetation, neuroendocrine disturbance from room light 
at night, and air pollution from cooking may primarily occur at home for 
housekeepers. They are, by definition, not suitable to be examined by 
using mobility-based exposure measures. We thus clarify that theorized 
pathways are necessary for generating useful substantive insights in 
public health studies.

6. Conclusions

In this study, we demonstrated that mobility-based measures of 
green space exposure may significantly mitigate the underestimation of 
the associations between green space exposures and health due to 
contextual errors and the NEAP. The reduction in such underestimation 
can be quantified through a mitigating factor. We found that partici
pants in the new towns of Hong Kong experienced the NEAP in their 
green space exposures. We derived the consistent mitigating factors that 
are statistically different from 1 at a very high confidence level. The 
mitigated underestimation ranges from 20.9 % to 52.3 %, which is a 
striking change in the estimated associations between green space 

exposure and human health. While green space exposure is employed as 
an example in this study, our analytics and the mitigating factor can also 
be applied to study other mobility-dependent environmental factors. 
Thus, our study has crucial implications for a broad range of environ
mental and public health studies that need accurate estimation of the 
possible health impacts of a range of environmental factors.
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